Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(isNatList(nil)) → mark(tt)
active(length(nil)) → mark(0)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = x1 + 2·x2
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = 2·x1 + 2·x2
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(isNat(length(V1))) → mark(isNatList(V1))
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1, x2)) = 1 + x1 + 2·x2
POL(active(x1)) = x1
POL(and(x1, x2)) = 2·x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
MARK(tt) → ACTIVE(tt)
MARK(U11(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
U111(X1, mark(X2)) → U111(X1, X2)
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
U111(X1, active(X2)) → U111(X1, X2)
S(active(X)) → S(X)
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
AND(X1, active(X2)) → AND(X1, X2)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(U11(tt, L)) → S(length(L))
MARK(zeros) → ACTIVE(zeros)
ISNATILIST(mark(X)) → ISNATILIST(X)
MARK(length(X)) → LENGTH(mark(X))
AND(active(X1), X2) → AND(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
ISNATLIST(active(X)) → ISNATLIST(X)
ACTIVE(and(tt, X)) → MARK(X)
U111(mark(X1), X2) → U111(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ISNATLIST(mark(X)) → ISNATLIST(X)
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNat(0)) → MARK(tt)
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
U111(active(X1), X2) → U111(X1, X2)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(0) → ACTIVE(0)
ISNATILIST(active(X)) → ISNATILIST(X)
MARK(nil) → ACTIVE(nil)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(tt) → ACTIVE(tt)
MARK(U11(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
U111(X1, mark(X2)) → U111(X1, X2)
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
U111(X1, active(X2)) → U111(X1, X2)
S(active(X)) → S(X)
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
AND(X1, active(X2)) → AND(X1, X2)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(U11(tt, L)) → S(length(L))
MARK(zeros) → ACTIVE(zeros)
ISNATILIST(mark(X)) → ISNATILIST(X)
MARK(length(X)) → LENGTH(mark(X))
AND(active(X1), X2) → AND(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
ISNATLIST(active(X)) → ISNATLIST(X)
ACTIVE(and(tt, X)) → MARK(X)
U111(mark(X1), X2) → U111(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ISNATLIST(mark(X)) → ISNATLIST(X)
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNat(0)) → MARK(tt)
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
U111(active(X1), X2) → U111(X1, X2)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(0) → ACTIVE(0)
ISNATILIST(active(X)) → ISNATILIST(X)
MARK(nil) → ACTIVE(nil)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 9 SCCs with 23 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ISNATILIST(mark(X)) → ISNATILIST(X)
The graph contains the following edges 1 > 1
- ISNATILIST(active(X)) → ISNATILIST(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ISNATLIST(mark(X)) → ISNATLIST(X)
The graph contains the following edges 1 > 1
- ISNATLIST(active(X)) → ISNATLIST(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ISNAT(active(X)) → ISNAT(X)
The graph contains the following edges 1 > 1
- ISNAT(mark(X)) → ISNAT(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- AND(mark(X1), X2) → AND(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- AND(active(X1), X2) → AND(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- AND(X1, mark(X2)) → AND(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- AND(X1, active(X2)) → AND(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- LENGTH(mark(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
- LENGTH(active(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S(mark(X)) → S(X)
S(active(X)) → S(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
- S(active(X)) → S(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U111(X1, mark(X2)) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U111(X1, mark(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- U111(X1, mark(X2)) → U111(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- U111(X1, active(X2)) → U111(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- U111(active(X1), X2) → U111(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- U111(mark(X1), X2) → U111(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- CONS(X1, active(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(active(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(X1, mark(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(length(X)) → MARK(X)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(zeros) → ACTIVE(zeros)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(U11(X1, X2)) → MARK(X1)
MARK(length(X)) → MARK(X)
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 1 + x1 + 2·x2
POL(active(x1)) = x1
POL(and(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(zeros) → MARK(cons(0, zeros))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(zeros) → ACTIVE(zeros)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 1
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(zeros) → ACTIVE(zeros)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 1
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(U11(x1, x2)) = 1
POL(active(x1)) = 0
POL(and(x1, x2)) = 1
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 1
POL(isNatIList(x1)) = 1
POL(isNatList(x1)) = 1
POL(length(x1)) = 1
POL(mark(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 0
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(U11(x1, x2)) = 1
POL(active(x1)) = 0
POL(and(x1, x2)) = 1
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 1
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 1
POL(length(x1)) = 1
POL(mark(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 0
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(and(tt, X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
Used ordering: Combined order from the following AFS and order.
MARK(x1) = x1
U11(x1, x2) = U11
ACTIVE(x1) = ACTIVE
mark(x1) = x1
length(x1) = length
cons(x1, x2) = cons(x1)
and(x1, x2) = x1
isNatList(x1) = isNatList
isNat(x1) = isNat
s(x1) = x1
tt = tt
active(x1) = active(x1)
0 = 0
isNatIList(x1) = isNatIList
zeros = zeros
nil = nil
Recursive path order with status [2].
Quasi-Precedence:
active1 > isNatList > [U11, ACTIVE, length, cons1, isNat]
active1 > 0 > tt > [U11, ACTIVE, length, cons1, isNat]
active1 > isNatIList > [U11, ACTIVE, length, cons1, isNat]
active1 > zeros > [U11, ACTIVE, length, cons1, isNat]
nil > [U11, ACTIVE, length, cons1, isNat]
Status: cons1: multiset
isNatList: []
U11: []
isNatIList: []
length: []
0: multiset
isNat: []
active1: multiset
tt: multiset
zeros: multiset
nil: multiset
ACTIVE: []
The following usable rules [17] were oriented:
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
Used ordering: Combined order from the following AFS and order.
MARK(x1) = MARK
U11(x1, x2) = U11
ACTIVE(x1) = x1
mark(x1) = x1
length(x1) = length
cons(x1, x2) = cons(x1, x2)
and(x1, x2) = and
isNatList(x1) = x1
isNat(x1) = isNat
s(x1) = x1
tt = tt
active(x1) = active(x1)
0 = 0
isNatIList(x1) = isNatIList
zeros = zeros
nil = nil
Recursive path order with status [2].
Quasi-Precedence:
[MARK, U11, length, cons2, and, isNat] > tt > [active1, 0] > isNatIList
[MARK, U11, length, cons2, and, isNat] > tt > [active1, 0] > zeros
Status: MARK: []
U11: []
isNatIList: []
length: []
0: multiset
isNat: []
cons2: [2,1]
active1: multiset
tt: multiset
zeros: multiset
and: []
nil: multiset
The following usable rules [17] were oriented:
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(U11(x1, x2)) = 1
POL(active(x1)) = 0
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 1
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1
POL(mark(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 0
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(and(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = 1 + x1
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = x1
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(X)) → ACTIVE(length(mark(X)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(X)) → ACTIVE(length(mark(X)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(isNat(X)) → ACTIVE(isNat(X))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(X)) → ACTIVE(length(mark(X)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 1
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = x1
POL(isNat(x1)) = 1 + x1
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 1
The following usable rules [17] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(X)) → ACTIVE(length(mark(X)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2)) at position [0] we obtained the following new rules:
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(s(X)) → MARK(X)
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(length(X)) → ACTIVE(length(mark(X))) at position [0] we obtained the following new rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(tt)) → ACTIVE(length(active(tt)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(0)) → ACTIVE(length(active(0)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(x0)) → ACTIVE(length(x0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(length(tt)) → ACTIVE(length(active(tt)))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(0)) → ACTIVE(length(active(0)))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(length(tt)) → ACTIVE(length(active(tt))) at position [0] we obtained the following new rules:
MARK(length(tt)) → ACTIVE(length(tt))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(length(0)) → ACTIVE(length(active(0)))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(tt)) → ACTIVE(length(tt))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(0)) → ACTIVE(length(active(0)))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(length(0)) → ACTIVE(length(active(0))) at position [0] we obtained the following new rules:
MARK(length(0)) → ACTIVE(length(0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(0)) → ACTIVE(length(0))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(length(nil)) → ACTIVE(length(active(nil))) at position [0] we obtained the following new rules:
MARK(length(nil)) → ACTIVE(length(nil))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(nil)) → ACTIVE(length(nil))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
The remaining pairs can at least be oriented weakly.
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = x1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
The remaining pairs can at least be oriented weakly.
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = x1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = 1
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
The remaining pairs can at least be oriented weakly.
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 1
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = 1
POL(isNat(x1)) = 1 + x1
POL(isNatIList(x1)) = 1
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
The remaining pairs can at least be oriented weakly.
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 1
The following usable rules [17] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
The remaining pairs can at least be oriented weakly.
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 1 + x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
The remaining pairs can at least be oriented weakly.
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
The remaining pairs can at least be oriented weakly.
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
The remaining pairs can at least be oriented weakly.
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
The remaining pairs can at least be oriented weakly.
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
The remaining pairs can at least be oriented weakly.
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We found the following model for the rules of the TRS R.
Interpretation over the domain with elements from 0 to 1.mark: 0
U11: 0
and: 0
0: 0
ACTIVE: 0
active: 0
cons: 0
MARK: 0
tt: 0
isNatList: 0
zeros: 1
isNatIList: 0
s: 0
length: 0
isNat: 0
nil: 0
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.1(x0)) → ACTIVE.0(length.1(x0))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-1(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
ACTIVE.0(U11.0-0(tt., L)) → MARK.0(s.0(length.0(L)))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
MARK.0(U11.0-0(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
MARK.0(U11.1-0(x0, x1)) → ACTIVE.0(U11.1-0(x0, x1))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(U11.0-1(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(U11.0-0(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(s.1(X)) → MARK.1(X)
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(U11.0-1(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.1-1(x0, x1)) → ACTIVE.0(U11.1-1(x0, x1))
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.1(x0)) → ACTIVE.0(length.1(x0))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-1(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
ACTIVE.0(U11.0-0(tt., L)) → MARK.0(s.0(length.0(L)))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
MARK.0(U11.0-0(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
MARK.0(U11.1-0(x0, x1)) → ACTIVE.0(U11.1-0(x0, x1))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(U11.0-1(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(U11.0-0(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(s.1(X)) → MARK.1(X)
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(U11.0-1(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.1-1(x0, x1)) → ACTIVE.0(U11.1-1(x0, x1))
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-1(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
ACTIVE.0(U11.0-0(tt., L)) → MARK.0(s.0(length.0(L)))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
MARK.0(U11.0-0(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
MARK.0(U11.1-0(x0, x1)) → ACTIVE.0(U11.1-0(x0, x1))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(U11.0-1(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(U11.0-1(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK.0(U11.1-0(x0, x1)) → ACTIVE.0(U11.1-0(x0, x1))
The remaining pairs can at least be oriented weakly.
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-1(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
ACTIVE.0(U11.0-0(tt., L)) → MARK.0(s.0(length.0(L)))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
MARK.0(U11.0-0(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(U11.0-1(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(U11.0-1(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVE.0(x1)) = x1
POL(MARK.0(x1)) = 1
POL(U11.0-0(x1, x2)) = 1
POL(U11.0-1(x1, x2)) = 1
POL(U11.1-0(x1, x2)) = 0
POL(U11.1-1(x1, x2)) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(and.0-0(x1, x2)) = 0
POL(and.0-1(x1, x2)) = 0
POL(and.1-0(x1, x2)) = 0
POL(and.1-1(x1, x2)) = 0
POL(cons.0-0(x1, x2)) = 0
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = 0
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = 0
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 0
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = 1
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = 1
POL(length.1(x1)) = 0
POL(mark.0(x1)) = 0
POL(mark.1(x1)) = 0
POL(nil.) = 0
POL(s.0(x1)) = 0
POL(s.1(x1)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
length.0(active.1(X)) → length.1(X)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
length.0(mark.0(X)) → length.0(X)
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
MARK.0(U11.0-1(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.1(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
ACTIVE.0(U11.0-0(tt., L)) → MARK.0(s.0(length.0(L)))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(U11.0-0(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(U11.0-0(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(U11.0-1(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(U11.0-1(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK.0(U11.0-1(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.0(x0), x1)), y1))
MARK.0(U11.0-1(and.1-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.1(x0), x1)), y1))
MARK.0(U11.0-0(and.1-1(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-1(mark.1(x0), x1)), y1))
MARK.0(U11.0-1(and.0-1(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-1(mark.0(x0), x1)), y1))
The remaining pairs can at least be oriented weakly.
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
ACTIVE.0(U11.0-0(tt., L)) → MARK.0(s.0(length.0(L)))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVE.0(x1)) = 0
POL(MARK.0(x1)) = x1
POL(U11.0-0(x1, x2)) = x1
POL(U11.0-1(x1, x2)) = x1
POL(U11.1-0(x1, x2)) = 1
POL(U11.1-1(x1, x2)) = 0
POL(active.0(x1)) = x1
POL(active.1(x1)) = 1 + x1
POL(and.0-0(x1, x2)) = x1 + x2
POL(and.0-1(x1, x2)) = 1 + x1 + x2
POL(and.1-0(x1, x2)) = 1 + x1 + x2
POL(and.1-1(x1, x2)) = 1
POL(cons.0-0(x1, x2)) = 0
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = 0
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = 0
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 1 + x1
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = 0
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = 0
POL(length.1(x1)) = 0
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 1 + x1
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
s.0(mark.1(X)) → s.1(X)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
isNatList.0(active.0(X)) → isNatList.0(X)
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
length.0(mark.0(X)) → length.0(X)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
isNat.0(active.1(X)) → isNat.1(X)
isNat.0(active.0(X)) → isNat.0(X)
isNat.0(mark.0(X)) → isNat.0(X)
s.0(mark.0(X)) → s.0(X)
s.0(active.0(X)) → s.0(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
isNat.0(mark.1(X)) → isNat.1(X)
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
ACTIVE.0(U11.0-0(tt., L)) → MARK.0(s.0(length.0(L)))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE.0(U11.0-0(tt., L)) → MARK.0(s.0(length.0(L)))
The remaining pairs can at least be oriented weakly.
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 1
POL(ACTIVE.0(x1)) = x1
POL(MARK.0(x1)) = x1
POL(U11.0-0(x1, x2)) = x1 + x2
POL(U11.0-1(x1, x2)) = 0
POL(U11.1-0(x1, x2)) = x2
POL(U11.1-1(x1, x2)) = 0
POL(active.0(x1)) = x1
POL(active.1(x1)) = 0
POL(and.0-0(x1, x2)) = x2
POL(and.0-1(x1, x2)) = 0
POL(and.1-0(x1, x2)) = x2
POL(and.1-1(x1, x2)) = 0
POL(cons.0-0(x1, x2)) = x1 + x2
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = x2
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = x1
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 0
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = 0
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = x1
POL(length.1(x1)) = 0
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 0
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = 0
POL(tt.) = 1
POL(zeros.) = 0
The following usable rules [17] were oriented:
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
mark.0(isNat.1(X)) → active.0(isNat.1(X))
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
s.0(mark.1(X)) → s.1(X)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
isNatList.0(active.0(X)) → isNatList.0(X)
active.0(isNat.0(0.)) → mark.0(tt.)
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
length.0(mark.0(X)) → length.0(X)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
isNat.0(active.1(X)) → isNat.1(X)
isNat.0(active.0(X)) → isNat.0(X)
isNat.0(mark.0(X)) → isNat.0(X)
s.0(mark.0(X)) → s.0(X)
s.0(active.0(X)) → s.0(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
isNat.0(mark.1(X)) → isNat.1(X)
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
mark.1(zeros.) → active.1(zeros.)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
mark.0(isNat.0(X)) → active.0(isNat.0(X))
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
active.0(and.0-1(tt., X)) → mark.1(X)
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
active.0(and.0-0(tt., X)) → mark.0(X)
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK.0(length.0(cons.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.1(x0), x1))))
MARK.0(length.0(and.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.0(x0), x1))))
MARK.0(length.0(and.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.1-0(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-0(mark.1(x0), x1))))
MARK.0(length.0(x0)) → ACTIVE.0(length.0(x0))
MARK.0(length.0(cons.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.1(x0), x1))))
MARK.0(length.0(cons.0-0(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-0(mark.0(x0), x1))))
MARK.0(length.0(and.1-1(x0, x1))) → ACTIVE.0(length.0(active.0(and.0-1(mark.1(x0), x1))))
MARK.0(length.0(cons.0-1(x0, x1))) → ACTIVE.0(length.0(active.0(cons.0-1(mark.0(x0), x1))))
The remaining pairs can at least be oriented weakly.
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVE.0(x1)) = 1
POL(MARK.0(x1)) = 1 + x1
POL(U11.0-0(x1, x2)) = 0
POL(U11.0-1(x1, x2)) = 0
POL(U11.1-0(x1, x2)) = 0
POL(U11.1-1(x1, x2)) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(and.0-0(x1, x2)) = 0
POL(and.0-1(x1, x2)) = 0
POL(and.1-0(x1, x2)) = 0
POL(and.1-1(x1, x2)) = 0
POL(cons.0-0(x1, x2)) = 0
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = 0
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = 0
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 0
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = 0
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = 1
POL(length.1(x1)) = 0
POL(mark.0(x1)) = 0
POL(mark.1(x1)) = 0
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE.0(length.0(cons.0-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
ACTIVE.0(length.0(cons.1-0(N, L))) → MARK.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
The remaining pairs can at least be oriented weakly.
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVE.0(x1)) = x1
POL(MARK.0(x1)) = 0
POL(U11.0-0(x1, x2)) = 0
POL(U11.0-1(x1, x2)) = 0
POL(U11.1-0(x1, x2)) = 0
POL(U11.1-1(x1, x2)) = 0
POL(active.0(x1)) = x1
POL(active.1(x1)) = 0
POL(and.0-0(x1, x2)) = x2
POL(and.0-1(x1, x2)) = 0
POL(and.1-0(x1, x2)) = x2
POL(and.1-1(x1, x2)) = 0
POL(cons.0-0(x1, x2)) = 1
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = 1
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = 0
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 1
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = 0
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = x1
POL(length.1(x1)) = 0
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 0
POL(nil.) = 0
POL(s.0(x1)) = 0
POL(s.1(x1)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
mark.0(isNat.1(X)) → active.0(isNat.1(X))
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
s.0(mark.1(X)) → s.1(X)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
isNatList.0(active.0(X)) → isNatList.0(X)
active.0(isNat.0(0.)) → mark.0(tt.)
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
length.0(mark.0(X)) → length.0(X)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
isNat.0(active.1(X)) → isNat.1(X)
isNat.0(active.0(X)) → isNat.0(X)
isNat.0(mark.0(X)) → isNat.0(X)
s.0(mark.0(X)) → s.0(X)
s.0(active.0(X)) → s.0(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
isNat.0(mark.1(X)) → isNat.1(X)
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
mark.1(zeros.) → active.1(zeros.)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
mark.0(isNat.0(X)) → active.0(isNat.0(X))
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
active.0(and.0-1(tt., X)) → mark.1(X)
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
active.0(and.0-0(tt., X)) → mark.0(X)
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK.0(U11.0-0(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-0(active.0(and.0-0(mark.0(x0), x1)), y1))
The remaining pairs can at least be oriented weakly.
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVE.0(x1)) = 0
POL(MARK.0(x1)) = x1
POL(U11.0-0(x1, x2)) = x1
POL(U11.0-1(x1, x2)) = 0
POL(U11.1-0(x1, x2)) = 0
POL(U11.1-1(x1, x2)) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(and.0-0(x1, x2)) = 1
POL(and.0-1(x1, x2)) = 0
POL(and.1-0(x1, x2)) = 0
POL(and.1-1(x1, x2)) = 0
POL(cons.0-0(x1, x2)) = 0
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = 0
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = 0
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 0
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = 0
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = 0
POL(length.1(x1)) = 0
POL(mark.0(x1)) = 0
POL(mark.1(x1)) = 0
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK.0(U11.0-0(x0, x1)) → ACTIVE.0(U11.0-0(x0, x1))
The remaining pairs can at least be oriented weakly.
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVE.0(x1)) = 1
POL(MARK.0(x1)) = 1 + x1
POL(U11.0-0(x1, x2)) = 1 + x1 + x2
POL(U11.0-1(x1, x2)) = 0
POL(U11.1-0(x1, x2)) = x2
POL(U11.1-1(x1, x2)) = 0
POL(active.0(x1)) = x1
POL(active.1(x1)) = 1 + x1
POL(and.0-0(x1, x2)) = x1
POL(and.0-1(x1, x2)) = x1
POL(and.1-0(x1, x2)) = 1
POL(and.1-1(x1, x2)) = 0
POL(cons.0-0(x1, x2)) = 0
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = 0
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = 0
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 1
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = 1
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = 1
POL(length.1(x1)) = 0
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 1 + x1
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE.0(length.0(cons.1-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
The remaining pairs can at least be oriented weakly.
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVE.0(x1)) = x1
POL(MARK.0(x1)) = x1
POL(U11.0-0(x1, x2)) = x1
POL(U11.0-1(x1, x2)) = x1
POL(U11.1-0(x1, x2)) = 0
POL(U11.1-1(x1, x2)) = 0
POL(active.0(x1)) = x1
POL(active.1(x1)) = 0
POL(and.0-0(x1, x2)) = x2
POL(and.0-1(x1, x2)) = 0
POL(and.1-0(x1, x2)) = x2
POL(and.1-1(x1, x2)) = 0
POL(cons.0-0(x1, x2)) = x1 + x2
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = x2
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = 1
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 1
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = x1
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = 1
POL(length.1(x1)) = 1
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 0
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = 0
POL(tt.) = 1
POL(zeros.) = 0
The following usable rules [17] were oriented:
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
mark.0(isNat.1(X)) → active.0(isNat.1(X))
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
s.0(mark.1(X)) → s.1(X)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
isNatList.0(active.0(X)) → isNatList.0(X)
active.0(isNat.0(0.)) → mark.0(tt.)
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
length.0(mark.0(X)) → length.0(X)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
isNat.0(active.1(X)) → isNat.1(X)
isNat.0(active.0(X)) → isNat.0(X)
isNat.0(mark.0(X)) → isNat.0(X)
s.0(mark.0(X)) → s.0(X)
s.0(active.0(X)) → s.0(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
isNat.0(mark.1(X)) → isNat.1(X)
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
mark.1(zeros.) → active.1(zeros.)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
mark.0(isNat.0(X)) → active.0(isNat.0(X))
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
active.0(and.0-1(tt., X)) → mark.1(X)
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
active.0(and.0-0(tt., X)) → mark.0(X)
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof2
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK.0(s.0(X)) → MARK.0(X)
MARK.0(U11.0-1(and.0-0(x0, x1), y1)) → ACTIVE.0(U11.0-1(active.0(and.0-0(mark.0(x0), x1)), y1))
ACTIVE.0(U11.0-1(tt., L)) → MARK.0(s.0(length.1(L)))
MARK.0(length.1(zeros.)) → ACTIVE.0(length.0(active.1(zeros.)))
MARK.0(U11.0-1(x0, x1)) → ACTIVE.0(U11.0-1(x0, x1))
ACTIVE.0(length.0(cons.0-1(N, L))) → MARK.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
The TRS R consists of the following rules:
isNat.0(active.1(X)) → isNat.1(X)
mark.0(cons.1-1(X1, X2)) → active.0(cons.0-1(mark.1(X1), X2))
U11.0-0(X1, active.1(X2)) → U11.0-1(X1, X2)
active.0(length.0(cons.0-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.0(N)), L))
mark.1(zeros.) → active.1(zeros.)
cons.0-1(active.0(X1), X2) → cons.0-1(X1, X2)
U11.0-0(mark.1(X1), X2) → U11.1-0(X1, X2)
and.0-1(active.0(X1), X2) → and.0-1(X1, X2)
active.0(U11.0-1(tt., L)) → mark.0(s.0(length.1(L)))
cons.0-0(active.0(X1), X2) → cons.0-0(X1, X2)
mark.0(cons.0-1(X1, X2)) → active.0(cons.0-1(mark.0(X1), X2))
and.1-0(X1, mark.1(X2)) → and.1-1(X1, X2)
mark.0(isNatIList.0(X)) → active.0(isNatIList.0(X))
cons.0-0(X1, mark.0(X2)) → cons.0-0(X1, X2)
isNatList.0(active.0(X)) → isNatList.0(X)
mark.0(length.0(X)) → active.0(length.0(mark.0(X)))
mark.0(and.0-0(X1, X2)) → active.0(and.0-0(mark.0(X1), X2))
and.1-0(X1, active.0(X2)) → and.1-0(X1, X2)
active.0(isNatIList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.1(V2)))
mark.0(isNatList.0(X)) → active.0(isNatList.0(X))
active.0(isNatList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.0(V2)))
mark.0(and.1-1(X1, X2)) → active.0(and.0-1(mark.1(X1), X2))
isNat.0(mark.0(X)) → isNat.0(X)
cons.0-0(X1, active.0(X2)) → cons.0-0(X1, X2)
cons.1-0(X1, mark.1(X2)) → cons.1-1(X1, X2)
isNatIList.0(active.1(X)) → isNatIList.1(X)
mark.0(tt.) → active.0(tt.)
cons.0-1(mark.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNat.0(s.1(V1))) → mark.0(isNat.1(V1))
mark.0(nil.) → active.0(nil.)
active.0(isNatList.0(cons.1-1(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.1(V2)))
isNat.0(mark.1(X)) → isNat.1(X)
length.0(mark.0(X)) → length.0(X)
mark.0(isNat.0(X)) → active.0(isNat.0(X))
mark.0(U11.0-0(X1, X2)) → active.0(U11.0-0(mark.0(X1), X2))
active.1(zeros.) → mark.0(cons.0-1(0., zeros.))
U11.1-0(X1, mark.0(X2)) → U11.1-0(X1, X2)
mark.0(length.1(X)) → active.0(length.0(mark.1(X)))
mark.0(and.0-1(X1, X2)) → active.0(and.0-1(mark.0(X1), X2))
active.0(isNatIList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatIList.0(V2)))
active.0(isNatList.0(cons.1-0(V1, V2))) → mark.0(and.0-0(isNat.1(V1), isNatList.0(V2)))
active.0(U11.0-0(tt., L)) → mark.0(s.0(length.0(L)))
mark.0(isNatList.1(X)) → active.0(isNatList.1(X))
and.0-1(active.1(X1), X2) → and.1-1(X1, X2)
isNatIList.0(mark.0(X)) → isNatIList.0(X)
mark.0(cons.1-0(X1, X2)) → active.0(cons.0-0(mark.1(X1), X2))
U11.0-0(X1, mark.0(X2)) → U11.0-0(X1, X2)
and.0-0(active.1(X1), X2) → and.1-0(X1, X2)
U11.1-0(X1, active.1(X2)) → U11.1-1(X1, X2)
mark.0(isNatIList.1(X)) → active.0(isNatIList.1(X))
cons.1-0(X1, active.0(X2)) → cons.1-0(X1, X2)
cons.0-0(X1, active.1(X2)) → cons.0-1(X1, X2)
cons.0-0(X1, mark.1(X2)) → cons.0-1(X1, X2)
U11.0-1(mark.0(X1), X2) → U11.0-1(X1, X2)
U11.0-0(X1, active.0(X2)) → U11.0-0(X1, X2)
U11.0-1(mark.1(X1), X2) → U11.1-1(X1, X2)
active.0(isNatIList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.1(V2)))
mark.0(isNat.1(X)) → active.0(isNat.1(X))
cons.1-0(X1, active.1(X2)) → cons.1-1(X1, X2)
U11.0-1(active.0(X1), X2) → U11.0-1(X1, X2)
active.0(length.0(cons.0-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.0(N)), L))
mark.0(s.0(X)) → active.0(s.0(mark.0(X)))
U11.0-0(active.1(X1), X2) → U11.1-0(X1, X2)
active.0(length.0(cons.1-1(N, L))) → mark.0(U11.0-1(and.0-0(isNatList.1(L), isNat.1(N)), L))
cons.0-1(mark.0(X1), X2) → cons.0-1(X1, X2)
and.0-0(X1, active.1(X2)) → and.0-1(X1, X2)
mark.0(0.) → active.0(0.)
and.0-1(mark.1(X1), X2) → and.1-1(X1, X2)
cons.0-0(active.1(X1), X2) → cons.1-0(X1, X2)
length.0(mark.1(X)) → length.1(X)
U11.0-1(active.1(X1), X2) → U11.1-1(X1, X2)
length.0(active.0(X)) → length.0(X)
active.0(isNat.0(s.0(V1))) → mark.0(isNat.0(V1))
length.0(active.1(X)) → length.1(X)
isNatList.0(active.1(X)) → isNatList.1(X)
active.0(length.0(cons.1-0(N, L))) → mark.0(U11.0-0(and.0-0(isNatList.0(L), isNat.1(N)), L))
mark.0(and.1-0(X1, X2)) → active.0(and.0-0(mark.1(X1), X2))
U11.1-0(X1, active.0(X2)) → U11.1-0(X1, X2)
cons.1-0(X1, mark.0(X2)) → cons.1-0(X1, X2)
mark.0(U11.0-1(X1, X2)) → active.0(U11.0-1(mark.0(X1), X2))
mark.0(s.1(X)) → active.0(s.0(mark.1(X)))
mark.0(cons.0-0(X1, X2)) → active.0(cons.0-0(mark.0(X1), X2))
active.0(isNat.0(0.)) → mark.0(tt.)
U11.0-0(active.0(X1), X2) → U11.0-0(X1, X2)
and.0-0(X1, mark.0(X2)) → and.0-0(X1, X2)
isNatIList.0(active.0(X)) → isNatIList.0(X)
and.0-0(mark.1(X1), X2) → and.1-0(X1, X2)
isNatList.0(mark.0(X)) → isNatList.0(X)
and.1-0(X1, mark.0(X2)) → and.1-0(X1, X2)
s.0(active.0(X)) → s.0(X)
U11.0-0(X1, mark.1(X2)) → U11.0-1(X1, X2)
cons.0-1(active.1(X1), X2) → cons.1-1(X1, X2)
active.0(isNatIList.0(cons.0-0(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatIList.0(V2)))
s.0(mark.1(X)) → s.1(X)
and.0-0(mark.0(X1), X2) → and.0-0(X1, X2)
and.0-1(mark.0(X1), X2) → and.0-1(X1, X2)
and.0-0(X1, active.0(X2)) → and.0-0(X1, X2)
s.0(active.1(X)) → s.1(X)
isNatList.0(mark.1(X)) → isNatList.1(X)
and.0-0(X1, mark.1(X2)) → and.0-1(X1, X2)
active.0(isNatList.0(cons.0-1(V1, V2))) → mark.0(and.0-0(isNat.0(V1), isNatList.1(V2)))
U11.1-0(X1, mark.1(X2)) → U11.1-1(X1, X2)
cons.0-0(mark.1(X1), X2) → cons.1-0(X1, X2)
and.1-0(X1, active.1(X2)) → and.1-1(X1, X2)
isNatIList.0(mark.1(X)) → isNatIList.1(X)
and.0-0(active.0(X1), X2) → and.0-0(X1, X2)
active.0(and.0-1(tt., X)) → mark.1(X)
isNat.0(active.0(X)) → isNat.0(X)
mark.0(U11.1-1(X1, X2)) → active.0(U11.0-1(mark.1(X1), X2))
U11.0-0(mark.0(X1), X2) → U11.0-0(X1, X2)
s.0(mark.0(X)) → s.0(X)
active.0(and.0-0(tt., X)) → mark.0(X)
cons.0-0(mark.0(X1), X2) → cons.0-0(X1, X2)
mark.0(U11.1-0(X1, X2)) → active.0(U11.0-0(mark.1(X1), X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
As can be seen after transforming the QDP problem by semantic labelling [33] and then some rule deleting processors, only certain labelled rules and pairs can be used.
Hence, we only have to consider all unlabelled pairs and rules (without the decreasing rules for quasi-models).
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
The remaining pairs can at least be oriented weakly.
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
Used ordering: Polynomial interpretation [25]:
POL(0) = 1
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x1·x2
POL(cons(x1, x2)) = x1·x2 + x2
POL(isNat(x1)) = x12
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(and(tt, X)) → mark(X)
active(zeros) → mark(cons(0, zeros))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatList(X)) → active(isNatList(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, L)) → mark(s(length(L)))
mark(isNat(X)) → active(isNat(X))
mark(tt) → active(tt)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
mark(nil) → active(nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
The remaining pairs can at least be oriented weakly.
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(s(X)) → MARK(X)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(U11(x1, x2)) = 0
POL(active(x1)) = 1
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1
POL(mark(x1)) = 1
POL(nil) = 0
POL(s(x1)) = 0
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(active(x1)) = 0
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1 + x1
POL(mark(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 1 + x1
POL(tt) = 0
POL(zeros) = 1
The following usable rules [17] were oriented:
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDPOrderProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = x1
POL(cons(x1, x2)) = x1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 1
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.